Optically-Detected Magnetic Resonance of Excitons Localized at As Doping Sheets in AlSb

E.R. Glaser, T.A. Kennedy, B.R. Bennett, B.V. Shanabrook, and L.A. Hemstreet

Naval Research Laboratory, Washington, D.C., 20375-5347

(Work supported in part by the Office of Naval Research)

BACKGROUND

As monolayers inserted in AlSb barriers of InAs/AlSb highspeed FETs result in enhancement of 2D electron concentrations

PROBLEM

Origin of the carriers has not been established (As_{Al} antisites have been suggested as the source of the donors)

TEST STRUCTURES

Superlattices (SLs) composed of fractional or single monolayers (MLs) of AlAs separated by 8-49 MLs of AlSb grown on (001) GaAs by MBE

APPROACH

- Low-temperature Photoluminescence (PL)
- Optically-Detected Magnetic Resonance (ODMR) at 24 GHz
- Structural parameters of SLs determined from x-ray diffraction measurements (AlSb buffer layers are under an average in-plane biaxial compression of $0.08 \pm 0.02 \%$)

- As Planes Induce Strong PL in A1Sb
- Strong Dependence on the Amount of As in the M L
- Weak Dependence on SL Period
- Extremely weak PL from A1Sb/GaAs reference sample

As Monolayer in AlSb

Theoretical Approach

- Ab initio total energy calculations with normconserving pseudopotentials and plane wave basis
- 20 atom AsAl–(SbAl)₉ and (SbAl)₁₀ supercells
- Relaxation of Al–As interlayer separation

Key Results

- Lowest unoccupied level at Γ is lowered in energy into the bulk AlSb bandgap due to the As monolayer
- The energy lowering depends sensitively on the strain in the AlAs layer
- The energy lowering of the lowest unoccupied level at Γ is calculated to be 0.24 eV for an elastically strained Al–As layer
- The wavefunction associated with the unoccupied level in the gap is localized around the As doping sheet
- The highest occupied $\Gamma_{\rm vb}$ state is pushed away from the AlAs layers and has an enhanced probability in the AlSb layers
- Good agreement with the experimental PL data

ANALYSIS of ODMR

(similar to ODMR found on excitonic recomb. from type-II short-period GaAs/AlAs MQWs; see H.W. van Kesteren *et al.*, Phys. Rev. B **41**, 5283 (1990))

- Splitting between outer lines (e₁,e₂) exhibits cos(θ) dependence \Rightarrow electron coupled to a hole from the $J_z = \pm 3/2$ VB with $g_{\perp} \sim 0$
- These lines from SLs with ~1 ML of AlAs are electron spin transitions with $g_{\equiv}=1.916$ 1.923 and $g_{\perp}=1.934$ 1.944 split by an exchange interaction ($\Delta\equiv a/2$) of 3.4 8.0 μ eV with the hole ($\Delta=19.5$ μ eV for (AlSb)₃₁(AlAs)_{0.27} SL !). Unsplit line described by the same g-tensor.
- lack g-values are between those for X-point EM donors/conduction electrons in AlAs and AlSb \Rightarrow Significant fraction of electron wavefunction lies at the AlAs ML, with some penetration into the AlSb layers
- ♦ $J_z = \pm 3/2$ holes are excluded to A1Sb layers ⇒ follows from weak exchange coupling, state of strain, and charge separation generally required for observation of strong ODM R

RECOMBINATION MODEL

(Band Offsets from W.A. Harrison and J. Tersoff, J. Vac. Sci. Technol. B4, '

- ◆ Electron is strongly bound at the plane
 ⇒ this binding determines the PL energy
- ♦ Electron and Hole are bound to form the exciton ⇒ this binding is reflected in the exchange
- ◆ Exciton is localized at a fluctuation ("interface roughness") in the M L ⇒ this localization provides the width of the PL line (~ 20 meV)

"Exciton Bound at an Isoelectronic Plane" (see H.P. Hjalm arson, J. Vac. Sci. Technol. **21**, 524 (1982))

SUMMARY

- Strong PL bands found from [(A 1S b)_M (A 1A s)_N]₁₂₀ SL s
- ODMR reveals S=1/2 electron spin transitions split by an exchange interaction (Δ) of 3.4-19.5 μ eV with $J_z=\pm 3/2$ VB holes
- Electron localized at AlAs ML and Hole excluded to AlSb
- Unknown donor-like defects do not compete favorably with As planes for photo-excited carriers
- As is an efficient electron trap in A1Sb with $E_{loc.}$ ~ 55 meV in point defect limit (consis. with electronegativity values)